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Abstract

In this paper, we sought to develop an efficient controller for vibration reduction in a fully clamped plate.
We investigated two control methodologies (positive velocity feedback and H1 control) and two types of
actuators (an inertial actuator and a distributed strain actuator). These were used to develop four control
architectures. Both theoretical and experimental studies were undertaken with varying results. The best
theoretical results were obtained when H1 control was used in conjunction with a distributed strain
actuator. Experimentally, the H1 controller using the distributed strain actuator outperformed the others.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Active vibration control is not a new topic. Vibration isolation in vehicles and heavy equipment
has been around since these machines were made. As technology changes and machines get more
advanced, solutions become more complex. Smart structures have been employed for vibration
control in applications ranging from skiis to spacecrafts. Piezoelectric material’s properties make
it an ideal choice in vibration suppression. The material can be integrated into a structural
member and can be used as either a sensor or an actuator.
see front matter r 2004 Elsevier Ltd. All rights reserved.
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As aircraft continue to push limits, vibration fatigue of the air frame becomes a concern.
Typically, passive control methods are susceptible to changes in the environmental conditions
such as temperature variations. Therefore, active control methodologies can significantly improve
vibration suppression in aircraft frames. Piezoelectric materials can be bonded to the aircraft
frame and provide excellent vibration control with minimal spacial requirements. Coupled with
control algorithms implemented on digital signal processors (DSPs), the entire system can be
compact and meet space and weight restrictions.

Many proposed control solutions have used simple control algorithms to suppress the
vibrations. Positive position [1], positive velocity [2], and state feedback control [3] have all been
shown to yield acceptable outcomes. Also, there are a number of more complex controllers being
used in vibration suppression. Adaptive position feedback [4] and neural networks [5], to name a
few, have been used. But, there has been no rigorous comparison to simpler control methods to
show that the performance benefits that arise from complexity is justifiable.

In this paper, we studied a fully clamped plate problem. Inertial actuators or distributed
strain actuators were used. In addition, positive velocity feedback (PVF) and H1 control methods
were used to suppress the first mode of vibration of the plate. Both theoretical and experimental
studies were undertaken to identify the best suited actuator/control method for the problem
at hand.
2. Plate modeling

For a fully clamped square plate, the governing equation for the lateral deflection with external
excitation force f ex and actuator force f a is

D
q2wðx; y; tÞ

qx4
þ 2

q4wðx; y; tÞ

qx2y2

�
þ

q4wðx; y; tÞ

qy4

�
� rh

q2wðx; y; tÞ

qt2

¼ f exðx; y; tÞ þ f aðx; y; tÞ; ð1Þ

where wðx; y; tÞ is plate transverse displacement; D ¼ Eh3=ð12ð1� n2ÞÞ; flexural rigidity; E;
Young’s modulus; n; Poisson’s ratio; r; density of the plate material; h; thickness of the plate;
f exðx; y; tÞ; total force generated by the external excitation; and f aðxa; ya; tÞ; total force generated
by the actuator.

To analyze the normal modes of vibration we let f exðx; y; tÞ ¼ 0 and f aðx; y; tÞ ¼ 0 and assume a
solution of the form

wðx; y; tÞ ¼ W ðx; yÞejot: (2)

Eq. (1) becomes

D
q2W ðx; yÞ

qx4
þ 2

q4W ðx; yÞ

qx2y2
þ

q4W ðx; yÞ

qy4

� �
� rho2W ðx; yÞ ¼ 0: (3)
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Assuming the edges are elastically restrained against rotation, the boundary conditions for Eq. (3)
are given by (see Ref. [6])
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qy2
þ n

q2W

qx2
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; (4b)

where Mx ¼ M1;xe
jot;My ¼ M1;ye

jot are the moments on the edges, and fx;fy are the rotation
coefficients in the x and y directions, respectively. Using Galerkin’s method, the displacement
function is approximated by (see Ref. [11])

W ðx; yÞ ¼
XN

n¼1

cnW nðx; yÞ; (5)

where W nðx; yÞ is the coordinate function for the nth mode, and cn is the modal coefficient.
The coordinate functions for the first five modes are chosen as

W 1ðx; yÞ ¼ ða1x4 þ b1x2 þ 1Þða1y4 þ b1y2 þ 1Þ; (6a)

W 2ðx; yÞ ¼ xða2x4 þ b2x2 þ 1Þða2y4 þ b2y2 þ 1Þ; (6b)

W 3ðx; yÞ ¼ yða3x4 þ b3x2 þ 1Þða3y4 þ b3y2 þ 1Þ; (6c)

W 4ðx; yÞ ¼ xyða4x4 þ b4x2 þ 1Þða4y4 þ b4y2 þ 1Þ; (6d)

W 5ðx; yÞ ¼ ðx2 � y2Þða5x4 þ b5x2 þ 1Þða5y4 þ b5y2 þ 1Þ: (6e)

From the boundary conditions (4) one can determine the coefficients an and bn for a square plate
with elastically restrained edges as

a1 ¼
16ða þ 2DfÞ
a4ða þ 10DfÞ

; b1 ¼ �
8ða þ 6DfÞ

a2ða þ 10DfÞ
; (7a)

a2�4 ¼
16ða þ 6DfÞ
a4ða þ 14DfÞ

; b2�4 ¼ �
8ða þ 10DfÞ
a2ða þ 14DfÞ

; (7b)

a5 ¼
16

a4
; b5 ¼ �

8

a2
; (7c)

where f ¼ fx ¼ fy ¼ 0:00355 and a ¼ b for a square plate. These values were obtained
experimentally in Ref. [7].
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The modal coefficients cn can be obtained normalizing the coordinate functions as follows:Z a=2

�a=2

Z a=2

�a=2
rW nðx; yÞW nðx; yÞdx dy ¼ 1; n ¼ 1; . . . ; 5: (8)

Substituting the coordinate functions (6) in the plate equation (3) and solving for o we obtained
the modal frequencies as

o1 ¼
l1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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9
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Þ

q
a2
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rh

p
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Þ

; (9a)
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l12;21
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115

aD3f3
þ 3;688;200

115
D4f4

Þ

q
a2

ffiffiffiffiffiffi
rh

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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Þ

q ; (9b)

o4 ¼
l4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dða4 þ 4020

67
a3Dfþ 90;360

67
a2D2f2

þ 891;000
67

aD3f3
þ 3;223;800

67
D4f4

Þ

q
a2

ffiffiffiffiffiffi
rh

p
ða2 þ 34aDf2

þ 300aD2f2
Þ

; (9c)

o5 ¼
l5

ffiffiffiffi
D

p

a2
ffiffiffiffiffiffi
rh

p ; (9d)

where ln are the modal frequencies coefficients.
The modal frequencies for the first five modes, computed with Eqs. (9) for a 0:03200 (0.8128mm)

(the one used in the experimental study) aluminum plate are presented in Table 1.
With the modal frequencies and shapes known, the forced vibration of the plate can be

expressed as (see Ref. [8])

wðx; y; tÞ ¼
X1
n¼1

W ðx; yÞZnðtÞ; (10)

where ZnðtÞ are the time-dependent generalized coordinates. Substituting Eq. (10) into Eq. (1) and
integrating over the entire domain of the plate we obtain the modal equations

€Znt þ o2
nZnt ¼ NmðtÞ; (11)

where NmðtÞ are the modal forces and on are the modal frequencies (see next section).
Table 1

Eigenvalues and modal frequencies

mn l f

11 36 257.25

12 74.296 547.66

21 74.296 547.66

22 108.59 813.89

33 137.294 1208.15
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3. Actuator choices

Two different types of actuators were analyzed and tested. The first, an inertial actuator, used a
piezoelectric material to vibrate a large mass. The vibration of this mass was used to counteract
the vibration of the plate. The advantage of this type actuator was their capacity to apply
large forces. Yet, this type of actuator was quite bulky and very heavy. In addition, because
of the moving mass, it added two differential equations to the model. While this did not
really pose a problem to the analysis, it added complexity. With the H1 controller, adding
two equations to the plant increased the order of the controller by two, making it more
complex and harder to implement. The equation of motion for the inertial actuator can be
expressed as

Maz00 þ ka½zaðtÞ � wðxa; ya; tÞ� þ ca½z
0 � wðxa; ya; tÞ� ¼ kf Va; (12)

where Ma is the inertial mass, za is the inertial mass displacement in the vertical direction, xa and
ya specify the actuator position on the plate, ca is the internal damping coefficient, ka is the
internal spring constant, wðxa; ya; tÞ is the plate displacement at the actuator position and kf is the
actuator gain and Va is the applied voltage. The actuator force can be computed by solving for the
inertia term ðMaz00Þ: Nm (see Eq. (11)) can be computed using

NmðtÞ ¼

Z
D

W nðx; yÞf aðxa; ya; tÞ: (13)

Substituting Eq. (13) into Eq. (11), we get

€ZnðtÞ þ o2
nZnðtÞ ¼ W ðxa; yaÞ½ka½zaðtÞ � wðxa; ya; tÞ�

þ ca½z
0 � wðxa; ya; tÞ� � kf Va�: ð14Þ

The second type of actuator was a distributed strain actuator (patch). In this case, a layer of
piezoelectric material was bonded to the plate. The actuator generated a strain on the plate to
counteract the vibrations. This actuator had a very low mass and profile, could be manufactured
to fit a specific shape, and added no additional complexity to the model. The disadvantage was
that once bonded, it cannot be re-used if the plate was to be replaced. Assuming the patch does
not significantly affect the dynamics of the plate, the equation of motion can be written as
(see Ref. [9])

D
q2wðx; y; tÞ

qx4
þ 2

q4wðx; y; tÞ

qx2y2
þ

q4wðx; y; tÞ

qy4

�
� rh

q2wðx; y; tÞ

qt2

�

¼
q2mx

qx2
þ
q2my

qy2
; ð15Þ

where

mx ¼ my ¼ 1
12

K1Eph2
p

d31

ta

Va; (16)
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where Ep is Young’s modulus, hp is the plate thickness and

K1 ¼
6bkð1þ kÞ

1þ 4bk þ 6bk2
þ 4bk3

þ b2k4
; (17)

where we chose b ¼ Eep=Ep and k ¼ ta=hp for simplicity.
The actuator forces can be computed using

NmðtÞ ¼

Z
D

W nðx; yÞ
q2mx

qx2
þ

q2my

qy2

 !
: (18)

4. Control methods and simulation results

4.1. Positive velocity feedback

PVF is the most basic control approach. The velocity of the plate is amplified with a gain K and
fed back into the actuator; see Fig. 1. For the inertial actuator, a gain ðkf Þ of 50,000 was used in
the simulations (see Eq. (14)). We arrived at this gain by increasing the gain until we reached a
physical limit, set by the voltage level that can be applied to the actuator. Similarly, for the patch,
a gain of 500,000 was used. Figs. 2 and 3 show the simulation results for the inertial and the patch
actuators, respectively. As can be seen from the figures, the patch actuator produces better results.
We attribute this difference to the fact that the patch acts over an area while the inertial actuator
applies a point force.

4.2. H1 control

The method of H1 control was chosen for this system because of its robust properties [12,13].
The design methodology is straightforward and adopted from Ref. [10]. The controller is based on
the state-space parameters of the plant and a parameter, g: In the optimization of the controller, g
is reduced until a certain set of design specifications are met or the controller fails to converge. To
facilitate the design process, weights can be introduced into the system. These weights are not used
in the real system but rather used to tune the frequency response of the controller (see Fig. 4). In
this figure, there are two inputs, a disturbance D and a noise input N: In addition, Z1 and Z2 are
the outputs of the plant and controller, respectively. The realization, K ; represents the H1
Fig. 1. Block diagram of the PVF controller design.
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Fig. 2. PVF using an inertial actuator.

Fig. 3. PVF using a distributed strain actuator.
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control. The system matrices AP; B1P; B2P; and CP area the state-space representation of the plant
(see Eqs. (11) and (18)). In both the inertial actuator and the patch systems, two constant weights
(W 1 and W 2) and two weights that are polynomials in the frequency domain (W 3 and W 4) are
implemented. These weights are applied to the inputs and outputs as shown in Fig. 4. The weights
will be chosen and optimized to achieve the desired performance. The order of the H1 controller
is equal to the order of the plant plus the orders of the frequency dependent weights. A trade off
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between using complex weights to achieve the desired performance and having a very high-order
controller is necessary in choosing the order of the weight functions.

The H1 approach attempts to minimize the H1 norm, kTk1; where the norm is defined as

kTk1 ¼ sup smax½ðTzwÞij� 8i; jog; (19)

where ðTzwÞij are the transfer functions of a multi-input, multi-output system:

Z1

Z2

" #
¼

ðTzwÞ11 ðTzwÞ12

ðTzwÞ21 ðTzwÞ22

" #
D

N

� �
: (20)

In addition, g is a parameter that should be minimized.
For the present system, there are four possible functions to minimize

TzwðsÞ ¼
W 1W 3G1S W 2W 3CP

W 1W 4G1K S W 2W 4K S

" #
; (21)

where G1 ¼ CPðsI � APÞ
�1B1P; G2 ¼ CPðsI � APÞ

�1B2P; S ¼ ðI � G2KÞ
�1:

One can see from the system matrix (21) that by manipulating the weights, the frequency
response can change. The solution of Eq. (21) can be obtained by selecting a feedback function K
of the following form (see Ref. [10] for details):

K ¼
A � B2Kc � Z1K�C2 þ g�2ðB1B0

1 � Z1K �D21B0
1ÞX1 Z1K �

�Kc 0

" #
; (22)

where Kc ¼ ~D12ðB
0
2X1 þ D0

12C1Þ; K � ¼ ðY1C0
2 þ B1D0

21Þ
~D21; Z1 ¼ ðI � g�2Y1X1Þ

�1:
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In addition, the functions X1 and Y1 can be obtained from the solution of the following
Ricatti equations (see Ref. [10]):

X1 ¼ Ric
A � B2

~D12D0
12C1 g�2B1B0

1 � B2
~D12B0

2

� ~C
0

1
~C1 �ðA � B2

~D12D0
12C1Þ

0

" #
; (23)

Y1 ¼ Ric
ðA � B1D0

21
~D21C2Þ

0 g�2C0
1C1 � C0

2
~D21C2

� ~B1
~B
0

1 �ðA � B1D0
21

~D21C2Þ

" #
; (24)

where ~D12 ¼ ðD0
12D12Þ

�1; ~D21 ¼ ðD21D0
21Þ

�1; ~C1 ¼ ðI � D12
~D12D0

12ÞC1; ~B1 ¼ B1ðI � D0
21

~D21D21Þ:
In the above equations, the matrices A; B1; B2; C1; C2; D11; D21; D12; and D22 are the state-space

representation of the system with the states of the plant and the weights combined (see Fig. 5):

A ¼

AP 0 0

BW3CP AW3 0

0 0 AW4

2
64

3
75; B1 ¼

W 1B1P

0

0

2
64

3
75; B2 ¼

B2P

0

BW4

2
64

3
75; (25)

C1 ¼
DW3CP CW3 0

0 0 CW4

" #
; D11 ¼ ½0�; D12 ¼

0

DW4

" #
; (26)

C2 ¼ ½C2P 0 0�; D21 ¼ ½0 W 2�; D22 ¼ ½0�: (27)

Finally, the controller will be stable if lmaxðX1Y1Þog2; where lmax is the largest eigenvalue of
X1Y1: If this condition is met, then g can be reduced and the Ricatti equations solved again.
This continues until the largest eigenvalue of X1Y1 is less than g2; where the previous iteration
becomes the controller.
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4.2.1. Inertial actuator

The control for the inertial actuator is the more complex of the two control systems because the
modeling of the actuator itself adds a second-order differential equation. We are only interested in
the first mode of vibration because we are placing the inertial actuator in the center of the plate.
The placement of the actuator allows it to excite—and therefore control—only the first mode. The
dynamics of the inertial actuator is modeled with a second-order differential equation. Thus, the
system can be modeled by two second-order differential equations:

Z001 þ o2Z1 ¼ cðkaðz � cZ1Þ þ caðz
0 � cZ01Þ � kfV Þ þ cF ex; (28)

Maz00 þ kaðz � cZ1Þ þ caðz
0 � cZ1Þ ¼ kf V ; (29)

where F ex is the excitation force; o the modal frequency, 1616.33; c the modal coefficient, 0.2849;
ka the actuator gain, 314911; ca the actuator damping, 25.6767; kf the voltage of force conversion,
0.067; Ma the actuator mass, 0.118; and V the controller voltage.

In these equations Z is the generalized coordinate, z is the displacement of the inertial mass of
the actuator from the rest position of the plate. For the inertial actuator system, the weights used
in the design were

W 1 ¼ 500; W 2 ¼ 5� 10�5; W 3 ¼
15;000

6:19579� 10�5 þ 1
;

W 4 ¼ 0:125
1:04167� 10�7s þ 1

2:5 � 10�8s þ 1
: ð30233Þ

The controller found under these conditions was a sixth-order system given by

AC ¼

0 1 0 0 0 0

�3:16� 106 �4:06� 106 1:11� 105 2:89� 101 �1:79� 106 2:51� 108

0 2:85� 10�1 0 1 0 0

1:63� 107 �8:55� 103 �3:29� 106 �8:59� 102 5:26� 107 �7:45� 109

2:74� 107 �1:51� 104 �1:09� 106 �1:13� 103 �7:38� 106 �1:32� 1010

0 0 0 0 1 0

2
666666664

3
777777775
;

(34)

BC ¼

3:93� 10�8

3:28� 107

�2:30

5:02� 102

0

0

2
6666666664

3
7777777775
; (35)
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Fig. 6. Frequency response of the inertial actuator system, with the dashed curve for the original system; solid curve for

the closed-loop system.

Fig. 7. Simulated results of the inertial actuator control.
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CC ¼ ½1:19� 101 � 6:53� 10�3 � 4:72� 10�1 � 4:90� 10�4 4:02� 101 � 5:69� 103�; (36)

DC ¼ ½0�: (37)

The frequency response of the system with and without the controller is shown in Fig. 6.
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The closed-loop system, including an external disturbance acting at the resonant frequency
of the first mode of the plate, was implemented in a symbolic module in Mathematica 3.0 and
tested numerically. The vibration in the plate started to build up until the controller was turned
on. At that time, the controller hit the maximum voltage allowed to the inertial actuator (80V).
The actuator saturated but continued to damp out the vibrations. The residual vibration of
the plate eventually reached a steady-state magnitude of 1:5� 10�8 m: Fig. 7 shows the
simulated results.

4.2.2. Distributed strain actuator
The H1 approach taken above was then utilized for the distributed strain actuator. The

distributed strain actuator offers the advantages of low weight and simpler modeling. In this case,
the distributed strain actuator is attached to the plate and has negligible mass. Therefore, the
equation of motion of the plate is not altered. This allows us to model the system with one second-
order differential equation:

Z001 þ o2Z1 ¼ NmV þ cF ex; (38)

where F ex is the excitation force; o the modal frequency, 1616.33; c the modal coefficient, 0.2849;
Nm the modal force, 0.02004 (see Eq. (18)); and V the controller voltage.

Again, Z represents the generalized coordinate of the system.
During implementation, one should monitor the spill-over effects into higher modes. However,

the symmetry of the distributed strain actuator about the center of the plate ensures that spill-over
Fig. 8. Frequency response of the H1 controller with the patch, with the dashed curve for the original system; solid

curve for the closed-loop system.
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Fig. 9. Time-domain response of the H1 controller with the distributed strain actuator.
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effects are absent. The weights chosen for this design are given as

W 1 ¼ 5; W 2 ¼ 1:8� 10�6; W 3 ¼
1� 106

s
1614

þ 1
; W 4 ¼

1
160

ð s
6000

þ 1Þ
s

4000
þ 1

: (39242)

With a second-order plant and two first-order weights, a fourth-order controller was designed.
The frequency response of the system is shown in Fig. 8.

The state-space matrices of the resulting controller were given by

A ¼

0 1:704 6390 0

�2:192 � 106 �2:303� 105 �1:824 � 108 6:657 � 105

0 4:608 � 10�3 �929:8 0

2:101� 107 �2:390� 105 �9:402 � 109 �6:784� 106

2
6664

3
7775; (43)

B ¼

�84;517

2:7064� 1010

33;644

0

2
6664

3
7775; (44)

C ¼ ½614:32 � 6:9902 � 2:7494� 105 971:3�; D ¼ ½0�: (45,46)

This controller was simulated under the same test conditions as the first case. The results showed
that the distributed strain actuator was able to achieve better control than the inertial actuator.
Fig. 9 shows the time domain results of the controller.
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Fig. 10. Experimental test setup: plate and speaker.

Fig. 11. Experimental test setup: electronics.
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5. Experimental results

To verify the analysis, an experimental test setup was created. A 600 � 600 (15:24 cm � 15:24 cm)
aluminum plate with a thickness of 0:03200 (0.8128mm) is mounted in an aluminum frame. A
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Fig. 12. Frequency response of controllers using the inertial actuator, with solid curve and diamond markers for no

control (first max. of 74.8mm and second max. of 31.3mm); dotted curve and star markers for PVF (first max. of

121mm and second max. of 22:5mm); and dashed curve and circular markers for H1 (first max. of 69:5mm and second

max. of 24:5mm).
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speaker is placed over the plate to generate the external excitations (see Fig. 10). Because the
initial impetus for this design was to use the controller on an aircraft, the electronics were chosen
with that environment in mind. The control algorithms are implemented on a 150MHz TI 6711
Floating Point digital signal processor (DSP) with a TLV2541 analog-to-digital converter (ADC)
and a TLV5636 digital-to-analog converter (DAC). Analog circuitry is used to power the
accelerometers and condition the signal before the ADC and an amplifier is used to amplify the
signal from the DSP to the actuators (see Fig. 11).

5.1. Inertial actuator

Two controllers were implemented with the inertial actuator, PVF and H1: Because of noise in
the system, the controller’s gain had to be reduced from the theoretical values to achieve stability.
The gains were reduced by three orders of magnitude for both the PVF and H1: When the
inertial actuator was added, the combined effect of the second degree of freedom and the inherent
passive damping was observed as two new natural frequencies with lower amplitude vibrations.
The two new natural frequencies are at 70 and 465Hz (the natural frequency of the bare plate was
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Fig. 13. Frequency response of controllers using the patch, with solid curve and star markers for no control (max. of

107mm); dotted curve and diamond markers for PVF (max. of 14:7mm); and dashed curve and circular markers for H1

(max. of 7:6mm).
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at 212Hz). In addition, the lowered magnitudes at the two natural frequencies were 74.8
and 31:3mm a reduction of 30% and 71%, respectively (the resonant magnitude of the bare plate
was 107mm).

The PVF controller further reduced the vibrations at 465Hz 28% from the actuator off level for
a total reduction of 79%. However, at 70Hz, the vibrations increased 62% for a total increase of
13%. The H1 controller was able to reduce the vibrations at both frequencies (7% at 70Hz and
22% at 465Hz) for a total reduction of 35% and 77% at 70 and 465Hz, respectively. The results
are shown in Fig. 12.

5.2. Distributed strain actuator

The same two control methodologies used with the inertial actuator were used with the patch.
Again, the gain had to be reduced from theoretical values to stabilize the system. In this case, the
gain was reduced by three and four orders of magnitude for the PVF and H1; respectively. Using
the speaker to excite the plate at 212Hz, the PVF was able to reduce the vibrations by 86%. The
H1 controller showed the best performance with a 93% reduction in the vibrations. Fig. 13 shows
the results of the controllers.
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Fig. 15. Accelerometer placement test using PVF. Excitation at 212Hz, with thick solid curve and star markers for no

control; thick dashed curve and circular markers for position 1 (backside); thin dashed curve and triangular markers for

position 2; solid gray curve for position 3; thin dotted curve for position 4; thick dotted curve for position 5; thin solid

curve and diamond markers for position 6; and dashed gray curve for position 7.

Fig. 14. Accelerometer placement on plate. Position 1 is on the backside, in the center.
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Fig. 16. Accelerometer placement test using H1: Excitation at 212Hz, with thick black curve and star markers for no

control (max. at 79:9mm); thick dashed black curve and circular markers for position 1 backside (max. at 8:17mm; 90%
reduction); thin gray curve for position 2 (max. at 4:1mm; 95% reduction); thick gray curve and triangular markers for

position 3; thick dashed gray curve for position 4; thin dashed black curve for position 5; thin black curve for position 6;

and thin dashed gray curve for position 7.
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5.3. Accelerometer placement

The above results were obtained when the accelerometer was placed on the opposite side from
the patch, in the very center of the plate. Because this would represent the outside of the aircraft,
several tests were conducted to see how the controllers responded to varying placement of the
accelerometer on the same side as the patch. Fig. 14 depicts the different locations used when the
accelerometer was placed at six distinct locations on the same side of the patch. Note that the
original placement on the backside of the plate was labelled as location one. In all these cases, the
accelerometer number one was used to collect the measurement data (not for feedback).

The tests were conducted with an excitation frequency of 212 and 500Hz (the 1st and 2nd
modal frequencies, found experimentally). The vibration reduction when using PVF control with
an excitation frequency of 212Hz, strongly depends on accelerometer placement (Fig. 15).
Positions 1 and 2 showing the best attenuation (79% and 80% reduction, respectively) while
position 6 results in the lowest attenuation (59% reduction). For the H1 controller, the results
showed minor dependence on accelerometer placement with vibration reductions ranging from
90% to 95% for position one and position two, respectively (see Fig. 16).
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Fig. 17. Accelerometer placement test using PVF. Excitation at 500Hz, with thick black curve and star markers for no

control; thin black curve and circular markers for position 1 backside (max. at 14:8mm; 19% reduction); thick gray

curve and triangular markers for position 2 (max. at 14:5mm; 21% reduction); thick dashed black curve and diamond

markers for position 3 (max. at 19:9mm; 9% increase); thin dashed black curve for position 4; dashed black curve for

position 5; black curve for position 6; and gray curve for position 7.
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When the plate was excited at 500Hz, neither controller resulted in significant vibration
attenuation (there was even minor amplification in a few cases). When there was amplification, it
was very small (9% for the PVF and 9% for the H1 controller). This shows that while there was
some spill-over into the second and third modes of vibration, the spill-over was negligible. Figs. 17
and 18 show the results of the 500Hz excitation experiments.

It can be seen that the choice of accelerometer placement is dependent on the control algorithm.
In both cases, position 1 shows good results but is not feasible in the actual design since the
accelerometer would be mounted outside the aircraft. Position 2 or 5 could be chosen for the H1

controller and position 7 for the PVF controller.
6. Conclusions

In this paper, four control architectures were developed and tested to control the first mode of a
600 (15.24 cm) square aluminum plate that was acoustically excited. The algorithms used two
different actuators and two different control methodologies. Accelerometer placement was tested
using two of the controllers to determine how location affected performance.
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Fig. 18. Accelerometer placement test using H1; Excitation at 500Hz, with thick dashed gray curve and star markers

for no control; thin gray curve and circular markers for position 1 backside (max. at 16:4mm; 10% reduction); thick

black curve and triangular markers for position 2 (max. at 16:4mm; 10% reduction); thin black curve and diamond

markers for position 3 (max. at 19:9mm; 9% increase); thin dashed black curve for position 4; dashed black curve for

position 5; black curve for position 6; and gray curve for position 7.
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Positive velocity control and H1 control were implemented with the inertial actuator. These
controllers exhibited good performance in simulation but did not perform as well in the
experiments. The inertial actuator adds a second degree of freedom to the system dynamics
because of the resonating mass. This produces two resonant frequencies. In simulations, these two
frequencies were very close to each other. However, the added weight of the inertial actuator on
the plate was not modeled so the natural frequency of the plate in simulation was higher than in
the experiments. Both the PVF and H1 controllers performed well at the higher frequency (77%
and 79%, respectively). Yet the performance of the H1 controller was superior to the PVF
controller at the lower frequency (35% attenuation vs. 7% amplification).

The distributed strain actuator was also used with PVF and H1 controllers. The simulation
results in this case were outstanding. The experimental results, perhaps not as much as the
simulation, were also excellent. The H1 controller outperformed the PVF (93% reduction in
vibrations vs. 80% for PVF).

The experimental results, while good, did not perform as well as the theoretical results, mainly
due to saturation of the accelerometer and delay in the system. Saturation due to high-frequency
noise and the digitizing effects of the DAC were not accurately modeled. In order to prevent
saturation in the experiments, the gain of the controllers had to be reduced. A small displacement
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will correspond to a large acceleration at higher frequencies, saturating the accelerometers. This
was seen in experiments and the gain had to be reduced to prevent this.

As far as actuator choice the distributed strain actuator was superior in all cases. The
distributed strain actuator was simpler to incorporate because it did not add a second degree of
freedom. Furthermore, the distributed strain actuator is compact and performs better
experimentally. This clearly shows that it is a better choice for future investigation.

An additional study was undertaken to study the spill-over effects (unintentionally exciting
higher modes) and effects of accelerometer placement when patch actuators were used. The results
showed that spill-over did occur, yet it was small, especially with the H1 controller. This was
attributed to the noise rejection capacity of the H1 control method. The accelerometer placement
also affected the results. The vibration suppression with the PVF controller was affected by the
accelerometer placement while the H1 controller was less affected. This can be also attributed to
the robust nature of this type of control.
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